Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20233149

ABSTRACT

It is known that inflammatory cytokines exacerbate the persistence and severity of various disease states. Breast cancer is the most frequently detected cancer among women worldwide and our recent studies suggest that the inflammatory state of breast (BrCa) cancer, a byproduct of elevated cytokine expression, induces epigenetic modifications leading to increased recurrence. Ongoing NCI clinical trial data (ClinicalTrials.gov, CCC19, NCT04354701) indicates that among patients with cancer and COVID-19, the mortality is high, and the most prevalent malignancies are of breast [21%] and prostate [16%] origin. Due to the risk of cytokine storm during SARS-CoV-2 infection, it is crucial to identify potential mechanisms of hyperinflammation in BrCa patients. In this study, we have evaluated the level of copy number alteration (CNA) of different inflammatory cytokines including IL-8, IL-1b, IL6, IL-8, GM-CSF, TNF-alpha and many others using cBioportal platform which includes over sixty-nine thousand tumor samples (n>69,000 from 213 different studies) from over 33 different cancers. We found that IL-8 has the highest level of amplification in different breast cancers subtypes. Besides, we also analyzed serum samples from BrCa patients, both recurrent and non-recurrent, by different proteomics methods to identify serum cytokines involved in prognosis and recurrence. Comparative data analysis between non-recurrent BrCa against recurrent BrCa patients identified several proteins with very high significance, mostly proteins associated with epigenetic pathways including HDAC9 (P = 0.0035), HDAC5 (P = 0.013), and HDAC7 (P = 0.020). Besides, we identified differential expression of several pro-inflammatory cytokines and immune regulators (IL-8, IL-4, IL-18, IL-12p70) that were present only in recurrent BrCa patient serum. Our data indicate that inflammatory processes contribute to epigenetic modifications that ultimately play a critical role in breast cancer recurrence. In terms of COVID-19 associated co-morbidity, the already dysregulated inflammatory state of BrCa patients may increase their susceptibility to cytokine-storm, leading to increased severity of COVID-related complications and increased mortality rate. Specifically, we hypothesize that the identified elevated level of IL-8 in BrCa patients may lead to a higher basal level of inflammation and contribute to the risk of attaining cytokine-storm during SARS-CoV-2 infection, making it a valuable target for future studies.

2.
Topics in Antiviral Medicine ; 31(2):336, 2023.
Article in English | EMBASE | ID: covidwho-2314601

ABSTRACT

Background: Severe COVID-19 is less common in children than in adults. Increasing evidence show that distinct immune-pathological changes can persist weeks or months after SARS-CoV2 infection, leading to Long COVID (LC). We investigated the systemic type I/III interferon (IFN-I/III) and inflammation response in peripheral blood mononuclear cells (PBMCs) of children with and without LC symptoms. Method(s): Blood samples were collected from children attending Umberto I hospital of Rome, within 3-6 months after a SARS-CoV-2 positive test and from control children. RNA was extracted from PBMCs for determining the levels of IFN-I (IFN-Alpha2, -Beta, -Epsilon and -Omega), IFN-III (IFN-Lambda1-3), NLRP3 and IL-1beta genes, and miR-141 expression by quantitative RealTime-PCR assays, normalized to housekeeping GUS gene and RNU6B, respectively. Result(s): 28 participants (M 12.5y SD 3.0) with LC symptoms, 28 participants (M 11.8y SD 3.0) without LC symptoms and 18 children who've never had SARS-CoV- 2 infection (M 10.5y SD 3.1) were enrolled. Comparing the three study groups, we found reduced levels of IFN-Lambda1, IFN-Lambda2 and IFN-Lambda3 (p=0.006, p< 0.001, p=0.012, respectively;Kruskal-Wallis (KW) test) mRNA in patients who have had SARS-CoV-2 infection as opposed to control group, whereas transcript levels of IFN-Epsilon (p= 0.019;KW test) were increased in the former with respect to the latter group;as well, remaining IFN-I genes analyzed showed a tendency to be up-regulated. As far as NLRP3 and IL-1beta levels was concerned, these genes were increased in LC patients (p< 0.001 for both genes;KW test). Additionally, miR-141, which has been reported to regulate inflammasome response, was overexpressed in LC patients (p< 0.001;Mann-Whitney test). Conclusion(s): These results showed a decreased levels of IFN-III mRNAs and an overexpression of IFN-Epsilon in children after 3-6 months of SARS-CoV-2 infection regardless of development of LC symptoms, suggesting that SARSCoV- 2 could have caused dysregulation of IFN response through unknown mechanisms (e.g. epigenetic modifications). Also, we found an overexpression of miR-141, NLRP3 and IL-1beta mRNAs in LC patients, indicating that a prolonged activation of inflammasome pathways could be associated with the development of LC symptoms.

3.
Aims Allergy and Immunology ; 7(1):60-81, 2023.
Article in English | Web of Science | ID: covidwho-2310379

ABSTRACT

Coronavirus disease 2019 (COVID-19) is highly infectious and may induce epigenetic alteration of the host immune system. Understanding the role of epigenetic mechanisms in COVID-19 infection is a clinical need to minimize critical illness and widespread transmission. The susceptibility to infection and progression of COVID-19 varies from person to person;pathophysiology substantially depends on epigenetic changes in the immune system and preexisting health conditions. Recent experimental and epidemiological studies have revealed the method of transmission and clinical presentation related to COVID-19 pathogenesis, however, the underlying pathology of variation in the severity of infection remains questionable. Epigenetic changes may also be responsible factors for multisystem association and deadly systemic complications of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infected patients. Commonly, epigenetic changes are evoked by alteration of the host's immune response, stress, preexisting condition, oxidative stress response, external behavioral or environmental factors, and age. In addition, the viral infection itself might manipulate the host immune responses associated with inflammation by reprogramming epigenetic processes which are the susceptible factor for disease severity and death. As a result, epigenetic events such as histone modification and DNA methylation are implicated in regulating pro-inflammatory cytokines production by remodeling macrophage and T-cell activity towards inflammation, consequently, may also affect tissue repair and injury resolution process. This review aims to discuss the comprehensive understanding of the epigenetic landscape of COVID-19 disease progression that varies from person to person with supporting interdisciplinary prognosis protocol to overcome systemic impairment.

4.
Cells ; 12(5)2023 02 25.
Article in English | MEDLINE | ID: covidwho-2281172

ABSTRACT

The developmental origins of health and disease (DOHaD) indicate that fetal tissues and organs in critical and sensitive periods of development are susceptible to structural and functional changes due to the adverse environment in utero. Maternal immune activation (MIA) is one of the phenomena in DOHaD. Exposure to maternal immune activation is a risk factor for neurodevelopmental disorders, psychosis, cardiovascular diseases, metabolic diseases, and human immune disorders. It has been associated with increased levels of proinflammatory cytokines transferred from mother to fetus in the prenatal period. Abnormal immunity induced by MIA includes immune overreaction or immune response failure in offspring. Immune overreaction is a hypersensitivity response of the immune system to pathogens or allergic factor. Immune response failure could not properly fight off various pathogens. The clinical features in offspring depend on the gestation period, inflammatory magnitude, inflammatory type of MIA in the prenatal period, and exposure to prenatal inflammatory stimulation, which might induce epigenetic modifications in the immune system. An analysis of epigenetic modifications caused by adverse intrauterine environments might allow clinicians to predict the onset of diseases and disorders before or after birth.


Subject(s)
Prenatal Exposure Delayed Effects , Pregnancy , Female , Humans , Immune System/metabolism , Parturition , Cytokines , Mothers
5.
Medical Journal of Chinese People's Liberation Army ; 47(2):197-202, 2022.
Article in Chinese | EMBASE | ID: covidwho-1791805

ABSTRACT

The purpose of Bacillus Calmette-Guérin (BCG) vaccination is to prevent Mycobacterium tuberculosis infection, but studies have shown that BCG activates innate immunity, causes epigenetic reprogramming and metabolic changes of myeloid cells, and forms innate immune memory or trained immunity. When bone marrow-like cells are stimulated by pathogens again, they show enhanced immune response and promote the host's nonspecific defense ability. Innate immune memory is also called training immunity. In recent years, BCG-induced innate immune memory has attracted much attention, and it will guide the design of novel vaccine. This article reviews the application of BCG in prevention and treatment of corone virus disease 2019, the non-specific protection and mechanism of BCG-mediated trained immunity.

6.
Clin Epigenetics ; 13(1): 210, 2021 11 24.
Article in English | MEDLINE | ID: covidwho-1533277

ABSTRACT

BACKGROUND: The thymic microenvironment is mainly comprised of thymic epithelial cells, the cytokines, exosomes, surface molecules, and hormones from the cells, and plays a vital role in the development, differentiation, maturation and homeostasis of T lymphocytes. However, the thymus begins to degenerate as early as the second year of life and continues through aging in human beings, leading to a decreased output of naïve T cells, the limited TCR diversity and an expansion of monoclonal memory T cells in the periphery organs. These alternations will reduce the adaptive immune response to tumors and emerging infectious diseases, such as COVID-19, also it is easier to suffer from autoimmune diseases in older people. In the context of global aging, it is important to investigate and clarify the causes and mechanisms of thymus involution. MAIN BODY: Epigenetics include histone modification, DNA methylation, non-coding RNA effects, and chromatin remodeling. In this review, we discuss how senescent thymic epithelial cells determine and control age-related thymic atrophy, how this process is altered by epigenetic modification. How the thymus adipose influences the dysfunctions of the thymic epithelial cells, and the prospects of targeting thymic epithelial cells for the treatment of thymus atrophy. CONCLUSION: Epigenetic modifications are emerging as key regulators in governing the development and senescence of thymic epithelial cells. It is beneficial to re-establish effective thymopoiesis, identify the potential therapeutic strategy and rejuvenate the immune function in the elderly.


Subject(s)
Aging/physiology , Epigenesis, Genetic/physiology , Epithelial Cells/pathology , Thymus Gland/pathology , Atrophy , Humans
7.
Front Pharmacol ; 12: 695237, 2021.
Article in English | MEDLINE | ID: covidwho-1295681

ABSTRACT

Acute kidney injury (AKI) is a common clinical complication with an incidence of up to 8-18% in hospitalized patients. AKI is also a complication of COVID-19 patients and is associated with an increased risk of death. In recent years, numerous studies have suggested that epigenetic regulation is critically involved in the pathophysiological process and prognosis of AKI. Histone acetylation, one of the epigenetic regulations, is negatively regulated by histone deacetylases (HDACs). Increasing evidence indicates that HDACs play an important role in the pathophysiological development of AKI by regulation of apoptosis, inflammation, oxidative stress, fibrosis, cell survival, autophagy, ATP production, and mitochondrial biogenesis (MB). In this review, we summarize and discuss the role and mechanism of HDACs in the pathogenesis of AKI.

SELECTION OF CITATIONS
SEARCH DETAIL